
A De-centralized Scheduling and L_,ad Balancing Algorithm

for Heterogeneous Grid Environments

Manish Arora and Sajal K. Das

Dept. of Computer Science & Engineering

The University of Texas at Arlington

Arlington, TX 76019-0015

{arora, das} @cse.uta.edu

Rupak Biswas

NAS \ Advanced Supercomputing Division

NASA Ames Research Center

Moffett Field, CA 94035-1000

rbiswas @nas.nasa.gov

Abstract

b_ the past two decades, numerous scheduling and load

balancing techniques have been proposed for locally dis-

tributed multiprocessor systems. However, they all suffer

from significant deficiencies when extended to a Grid en-
vironment. some use a centralized approach that renders

the algorithm unscalable, while others assume the overhead

involved in searching for appropriate resources to be neg-

ligible. Furthermore, classical scheduling algorithms do
not consider a Grid node to be N-resource rich and merely

work towards maximizing the utilization of one of the re-

sources. [n this paper, we propose a new scheduling and

load balancing algorithm for a generalized Grid model of

N-resource nodes that not only takes into account the node

and network heterogeneity, but also considers the overhead

involved in coordinating among the nodes. Our algorithm
is de-centralized, scalable, and overlaps the node coor-

....... un time with that of the actual processing of ready

jobs, thus saving valuable clock cycles needed for making

decisions. The proposed algorithm is studied by conduct-

ing simulations using the Message Passing Intelface (MPI)

paradigm.

1. Introduction

Computational Grids [ 1, 6] are typically a conglomera-
tion of various resources with different owners, but make it

possible for users to develop complex applications that ac-
cess remote sites. Each of these sites (or nodes) could be a

uni-processor machine, a symmetric multiprocessor cluster,

a distributed memory multiprocessor system, or a massively

parallel supercomputer. Each node consists of a number

of hetero_eneous_ resources; the heterogeneity_ , t.uem_-o in the

type and capability of each of its N-resources (e.g., number

of processors, CPU speed, amount of memory, and so on).

Perha I s the biggest advantage of a heterogeneous Grid en-
vironn_ent over an isolated multiprocessor system is that it
can of er resources to the user that are not locally available.

With the Grid becoming a viable high performance com-

puting alternative to the traditional supercomputing envi-
ronme _t, various aspects of effective Grid resource utiliza-

tion axe gaining significance. With its multitude of re-

source ;, a proper scheduling and efficient load balancing

across the Grid can lead to improved overall system per-
formm ce and a lower turn-around time for individual jobs.

Classi_ al load balancing algorithms [3, 5, 14, 20] address

this pr _blem by maximizing the utilization of a single re-

source (generally, CPU). But, the approach loses its merit

for sys Lems like-the SUN Enterprise, the SGI Origin, and
the IBM Regatta that offer multiple resources like shared

memol y, large disk farms, distinct I/O channels, and soft-

ware ti =enses that can be independently allocated to differ-

ent job ,.

Anc:ther area where classical and even recent N-resource

load b tlancing approaches show their deficiency is in

scalabi ity--not many of them [10, 11, I2, 13, 14, 15, 18]

can be scaled to the large number of processors in a Grid.
This dr twback is due either to the centralized approach of

the alg,_rithm [13, 18] or to the need for each node to have

global ystem knowledge [11]. Also, most algorithms [10]
either _:_onot consider the overhead of searching for ap-

propriaxe nodes or consider it to be negligible. This as-

sumpti,,n is valid for tightly-coupled multiprocessor sys-

tems [16, 17, 19], but not for geographically distributed en-
vironm '_nts like the Grid.

The present work is targeted to the Grid model where
each nc]e is assumed to be a N-resource server and any job

submitt _d to the Grid can be executedat any node. The only

information our proposed algorithm needs before a node

schedul _s ajob is the ^ ' "_ "; _ latency h ........ itself_ommunl_a_,o,, _........

and its J_eighbors, thus ma_ng it fully scalable--an impor-
tant cor _ideration for a wide-area network like NASA's In-



formationPowerGrid(IPG)[2,7].The overhead involved

in capturing the resource utilization status of a given node's

neighbors before malting a scheduling decision can be a ma-
jor issue negating the advantages of job migration. Our al-

gorithm therefore overlaps the time spent looking for appro-

priate nodes with the actual execution of the ready jobs, thus

saving precious clock cycles. Also, since each Grid node

(whether a single uni-processor machine or a muItiproces-

sor system) can have its own independent scheduling algo-

rithm, our technique does not overrule the local schedulers'

job assignment policy. The class of problems we address

is where jobs are computation-intensive and can be divided

into :orally independent sub-tasks with no communication
between them.

We have conducted extensive experiments using the
Message Passing Interface (MPI) paradigm and by simulat-

ing the job arrival rate. We compared the quality of load

balance with the ideal case (where no overheads are in-

volved) and found that our algorithm performs remarkably

well in an heterogeneous Grid environment and gives en-

couraging results. The remainder of this paper is organized

as follows: Section 2 describes our algorithm and presents

pseudo codes of the key procedures; Section 3 discusses the

experimental setup that we used to test and substantiate our
claims, and interprets the results; and Section 4 concludes

the paper.

2. Scheduling and load balancing

Two important aspects of any wide area network sched-

uler are its transfer [4, 15] and location [8, 9] policies. The

transfer policy decides if there is a need to initiate load bal-
ancing across the system, and is typically threshold based.

Using work.load information, it determines when a node be-

comes eligible to act as a sender (transfer a job to another

node) or as a receiver (retrieve a job from another node).

The location policy selects a partner node for a job transfer

transaction. In other words, it locates complementary nodes

to/from which a node can send/receive workload to improve

overall system performance.

Location policies can be broadly classified as
sender-initiated [4, 21], receiver-initiated [4, 12], or

©,mmetrically-in#iated [5, 15, 19]. Sender-initiated

policies are those where heavily-loaded nodes search

for lightly-loaded nodes while receiver-initiated policies

are those where lightly-loaded nodes search for suitable

senders. Symmetrically-initiated policies combine the

advantages of these two by requiring both senders and

receivers to look for appropriate partners.

Load balancing policies can also be classified on the ba-

sis of how up-to-date each node's knowledge is about the

state of the system. Dynamic [16, 17] policies make de-

cisions based on the current system state and can rapidly

adapt to workload fluctuations. On the other hand, policies

that use static information and are not amenable to changes

in the workload are known as static [3] policies. How-

ever, dynamic policies incur the overhead of communicat-

ing among the system nodes to keep them informed about
the state of the system.

In this section, we describe our scheduling and load bal-

ancing algorithm for N-resource Grid environments. It is

dynamic, sender-initiated, and completely de-centralized.

The last feature makes it extremely scaIable for Grid en-

vironments. A remarkable property of our algorithm is that

it uses a smart search strategy for finding parmer nodes. It

atso overlaps this decision making process of a node with
the actual execution of ready jobs, thereby saving precious

processor cycles.

2.1. Preliminaries

Before discussing the algorithm, let us introduce the con-

cepts of Internal and External queues, which we assume ex-
ist in each Grid node. The Internal Queue of a node consists

of the ready jobs which would be executed by this particu-

lar node only. Let 7- be the time when the tasks were last

mapped, a(tj) be the arrival time of task t i, and e(ti) be

the time tj starts executing. Then, the jobs in the Internal
Queue are those that have been mapped and scheduled to

this node, and are either being executed (Eq. 1) or are ready

to be executed (Eq. 2); they would never be delegated to any
other node:

I a(t ) < e(tj) < T} (1)

{tj I a(t,) _ %e(tj) > (2)

Instead, the External Queue of a node consists of jobs which
have been initially submitted to this node by a user, but are

yet to be mapped and scheduled for execution (Eq. 3):

l a(tj) > %e(tj) > (3)

Let us now enumerate the key notations we will be using

throughout the paper to explain our algorithm:
• Pit Grid node i

• P[: The j-th resource of Pi

• Jk: Jobk

• J_: Ideal requirement for the j-th resource by Jk

• Neigh(Pi): [mmediate neighbors of Pi

• Compi(t): Time needed by Pi to empty its Internal

Queue assuming no more jobs are assigned to it after time t

• Comrn_: Communication latency between Pi and Pj

• ExQi: Number of jobs in the External Queue of Pi

We assume that each Grid node has knowledge about the

communication latency between itself and all of its neigh-
bors; i.e., each node Pi knows Comrn_, Vj E Neigh(PO.

Not only does this make the algorithm highly scalable, it



alsoallowsthenetworktoconvenientlyaccommodateany
changesinitstopology.

Wealsopostulatethateachincomingjob knowsitsre-
quirementsforeachof theresourcesavailableata node.
In orderto generalizethisconcept,wedefine37-resource
jobsandN-resource nodes/servers. Each job gk looks for

a node Pi with resources po p1 ..... p_'-l, such that it

meets its requirement for each resource type, jo, j_ .....

j_-i The aIgorithm described below would be executing

on every node of the Grid.

2.2. Proposed algorithm

Whenever a job is submitted by a user to a node Pi, pro-

cedure Main (Fig. I) invokes procedure NeedForTriggering

(Fig. 2) to make a decision whether the job need to be mi-
gated. If the job ought to be migrated to another node,

a request is sent to all nodes j E 2Veigh(Pi), provided

2 x Comm{ <_ TimezQ. This condition implies that the

status request to the neighboring nodes and their responses

should be received before the Internal Queue is emptied

(denoted by TimeIQ). This strategy avoids any wastage
of the node's resources; the inequality overlaps the task of

looking for appropriate nodes with the actual processing of

the Internal Queue, thus hiding the overhead.

Procedure Main

Repeat forever
If (ct +- new job submitted)

T{me +- Current System Time (CST)

NeedForTriggering Ca, Time )
If (NeedForTriggering returns TRUE)

TimezQ +- Time to empty Internal Queue
Vj E .N-eigh(P_)

If (2 x Comm{ < TimeiQ)
Request (j, C ommJi ,T ime rQ )

Receive (Timem;)
Balance (S, R)

End If
End If

End Repeat
End Main

Figure 1. Procedure Main

Refer to Figures 2 and 3 for the triggering policy we have

incorporated into our algorithm. It is based on the simple

heuristic that greater the load at a node, the less inclined

would it be to accept future loads. Within a time window

of Compi(T), triggering is initiated if the traffic burst is

more than admissible; however, higher the resource usage,
the smaller is the traffic burst that a node will accommodate

(Fig. 3).

Pro :edure NeedForTriggering (o_,Time )
d 4-- 6+cz /* 6 is Cummula_cive Load

I (CST--Time _< Comp{(r))
If (3 > Admissible Load at T)

s +- CST

Return TRUE

Else

Commit 6 to Internal Queue
T 4-- CST

6+-o

Return FALSE

E_d If

End NeedForTriggering

*/

Figure 2. Procedure NeedForTriggering
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A n( de, having received a request to send the status of its

resourc ;s, packs the information about their current utiliza-

tion ant sends it back to the requesting node along the route

the req_est came (Fig. 4). This route is also piggybacked

to the _ ?de which needs to migrate load. Besides replying

to requ, sts, a node also recursively pings its neighbors for
their re.,ource status if its database says that the total round-

trip latency between the sender and its neighbor would be

less tha_ TiraesQ. This allows the time required to look for
additior al resources be hidden under processing.

Pro :edure Request (i, 7, TimexQ )
Create Set S

5.Route +- Route followed to reach i

S.ResStatus <-- Current usage of

{.NO,/oil... , _/N-1 }

YPI_Send (S to i)

V i E Neigh(P{)

If (2 x (7+Comm_) _< TimezQ)
Request (j, 7 + C omm_ , Time zco)

End If

End Request
I

Figure 4. Procedure Request



Figure 5 shows the pseudo code for procedure Receive.

The sender waits for time TimesQ to get replies from the
nodes that have been queried for the status of their re-
sources.

Procedure Receive (TimezQ )
While (Time <_ Tirne_Q)

MPl_Receive (S)

End While

R +- Number of replies

Return R
End Receive

Figure 5. Procedure Receive

Figure 6 shows our procedure to schedule the jobs soon

after TimesQ elapses. Without loss of generality, we can

assume that0.0 < pi jJ < 1.0, 0 < j < iV- 1. Let

M/k be a match variable which defines the number of re-

sources in node Pi that fulfill the requirements of job Jk- If

bool(J_ <_ P/) is 1 and bool(J_ > P/) is 0, then wecan

formally define M/k as

N--1

j=O

(4)

Clearly, 0 _< Mi k _< N. Now, let us define matrices T

and C, and vector V, as described in steps I, 2, and 3 of
procedure Balance (Fig. 6). Intuitively, the u-th row and

k-th column of T gives the number of resources in node Pi

that meets the requirements of job Jk; the k-th entry of V

gives the number of nodes which satisfy the minimum re-

quirements of Jk; and element C,_,j denotes that there is a
common node that satisfies the requirements of both Ju and

Jj, and that there might be a conflict while scheduling them.

Another possible scenario is when the set of nodes that

satisfy the requirements of J_ is a subset of the set which

satisfies the requirements of Jj; in such cases, giving pref-

erence to Jj might leave J_ with no viable option. To

avoid such cases, our algorithm first schedules jobs that

have the fewest choices. T(_,mi_(v.)) in step 4.1 of Fig. 6
corresponds to the job Jmi,_ that has the minimum num-

ber of nodes it can be mapped to. The variable z indi-

cates the node P= to which Jmin can be delegated. Step 4.2

checks matrix C and, in case there is another job that can be

mapped to P., chooses a different z for J-,_m, if possible.

FinaIly, Jr, in is mapped and scheduled to P.. This mech-

anism continues until all jobs have been scheduled or until

no more can be mapped because of the lack of resources.

3. Experimental study

Here we describe the metrics used to gauge the perfor-

mance of our scheduling and load balancing algorithm, the

setup we had for our experiments, the simulation results that
were obtained, and the conclusions we can draw from them.

3.1. Performance metrics

We analyze the performance of our algorithm using a

parameter called Normalized Pelfonnance, q (defined in
Eq. 5). Basically, r/is the effectiveness of the load balanc-

ing strategy. It is a comprehensive metric as it considers

both the initial load balance as well as the load balancing
overheads:

T,,o - T_
- T=o - Tlb (5)

Here, T=o is the time to completely process all the jobs on a

uniprocessor machine; Tlb is the time required by one pro-

cessor divided by the total number of processors, thus pro-

viding the mntime with ideal load balancing; and T= v is
the time needed by our algorithm to balance the load and

execute all the jobs. Clearly,

if Trn.u _ Ttb, then ;7 _ 1 (6)

if Troy -+ Tno, then r/-+ 0 (7)

These two conditions imply that higher the value of r/, the
better is the load balancing; the ideal case being 7?= 1.

3.2. Experimental setup

The experimental results reported in this paper were ob-

tained by using an MPI implementation of our proposed al-

gorithm. It is worth mentioning here that the various pa-

rameters of our aIgorithm were varied following a Poisson

distribution. Their respective mean values are given in Ta-
ble 1.

Table 1. Variables used in the experiments

.Variables _ Simulated by

Processing Power 2-16
Requirements

Memory 2-16
Requirements

I/O Requirements 2-16

Network Latency 5-11
, Node Degree 5

50 floatingpointmultiplications per unit
1K.Bof memory

allocated & freed per unit
IKB of data written

to disk per unit
sleep(3) per unit

number of

neighboring nodes



ProcedureBalance ($, R)

!. Using S, define matrix T of dimensions Ez{){ x R where T_,k+-._f_
R

2. Define vector V of dimension ExQi where 17 +--Zu=l bool(Tu,k : At), 1 < k < EzQI

3. Define matrix C of dimensions EzQi × ExQi .4here

Cl,k <-- Ck,l +- i, if Ta,j : Tl,j : N; O, otherwise ; 1 <_ l,k <_ ExQi, ] < j <_R

4. Repeatunfil (no more jobs can be mapped)

4.1 z e-- u l T(,,.,_n(vi)) = N, t<u<R, I < j < Ex( _

4.2 If (C(,_i,_(vj),_) = 1, 1 < k < ExQ 0
Choose another z, if possible

4.3 Assign Jmi_(vi) to node Pz, 1 < j <_ExQi

4.4 Remove row min(Vi), I <_j < ExQI and colu_ z from T

End Balance

Figure 6. Procedure t alance

Experiments were conducted for three different values of

M_zv (15, 20, and 25) (see Fig. 3), and repeated for 1-, 2-,
and 3-resource nodes. The following three inequalities give

the relationships between the mi'S, where each mi refers to

the slope of the line joining the co-ordinates (0, Max) and

100, 0) (Fig. 3):

ml, ra2, raa < 0 (8)

r/'Zl < m2 < m3 (9)

(10)

3.3. Simulation results

We have conducted extensive experiments to evaluate the

performance of our algorithm and help us substantiate our

approach. Figures 7 through 9 illustrate the results obtained

from the study.

To verify that our algorithm works well for completely

heterogeneous systems, we divided the experiments into

three _oups. The first set of experiments was run on sys-
tems where heterogeneity was in the capabilities of the
N-resources of a node; thus, the communication latency

between all neighboring nodes was constant. The second

set involved keeping the node capability constant and vary-

ing only the communication latency between the nodes. Fi-

nally, the third set of experiments combined the above two

approaches, thereby exposing a totally heterogeneous setup

to various load conditions (that were varied by changing the

job arrival rate and the load associated with eachjob). Each

set of experiments was repeated for 1-, 2-, and 3-resource

nodes. The objective was to evaluate the algorithm thor-

oughly by taking various scenarios of heterogeneity into
consideration.

Results for the first set (where only the capabilities of the

N-resources of a node are varied while keeping all other

factors unchanged) are summarized by the uaphs in Fig. 7.

The horizontal axis represents the Mean Node Capacity of

the ne :work which can be defined as the mean value used

for tht capacity of each of the resources in a node (all re-
source having the same mean). Increasing the resource ca-

pabilit ¢ of the nodes without changing the job resource re-

quirer_,ents effectively reduces the granularity of the latter.

As de ficted, any increase in node capability increases r1.

Howe" er, as the threshold slopes (mi's) become steeper, 77
decrea;es. This is because the frequency of triggering the

load b dancing algorithm is reduced.

In tm second set of experiments, the Mean Node Capac-

ity wa: held constant while varying the communication la-

tency. Fhe results presented in Fig. 8 show that r]decreases

with ir creasing communication cost. As in the previous set,

the al=_)rithm performs best when the absolute value of the

thresh_ Id slope is the smallest (ma in this case).

For the final set of experiments, we vary the input load

for a setup which has a heterogeneous mix of resource capa-

bility _ad communication latency. This was repeated for 1-,

2-, ant 3-resource job specification for a 3-resource node.

Figure _ shows that the execution time decreases as we get
more s _ecific about job requirement.

4. Co_clusions

In tt is paper, we presented a highly de-centralized, dis-
tributec, and scalable algorithm for scheduling tasks and

load b_lancing resources in heterogeneous Grid environ-

ments. Our algorithm takes into consideration the over-
heads c _coordination and communication between the Grid

nodes _shich were assumed to be N-resource servers that

varied :a their respective capacities across resources. The

goal w::s to assign each node a job which would utilize

its reso _rces in the best possible manner, thus providing

an effec tire scheduling and resource management strategy.
We intr _duced a new load balance uiggering policy based

on the, ndurance of a node reflected by its current queue

length. Also, our algorithm overlaps the time needed for
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various communication overheads with that of executing the

jobs already committed to the nodes, making the effective

time for overheads virtually zero. The algorithm has been

discussed in detail with pseudo codes being provided for all

the major modules of the algorithm.

To substantiate our claims, a comprehensive experimen-

tal study was conducted using the Message Passing Inter-

face (MPI) paradigm. Heterogeneity in resource capabil-

ities and communication latency was maintained while re-

peating the set of experiments for 1-, 2-, and 3-resource jobs

and nodes. The Normalized Performance parameter was

0.79 for 3-resource nodes and as high as 0.85 for 1-resource

nodes. These excellent performance levels could be attained

only by overlapping the various overheads with the actual

execution of the jobs.
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